20

SYSTEM AND METHOD FOR GENERATING AND
MAINTAINING SOFTWARE CODE
RELATED APPLICATION
This subject application claims the benefit of U.S. Provisional Application Serial Nos.
60/270,950, entitled "GUI SAS CODE Development and Maintenance Environment Software,"
filed on Feb 23, 2001 and 60/293,854, entitled "Integrated Development Environment and GUI

for Data Management Systems," filed on May 25, 2001.

BACKGROUND OF THE INVENTION

This invention relates generally to software maintenance and development tools and,
more particularly, to an extensible, language independent software development tool having a
graphical user interface, i.e., a GUI Integrated Development Environment.

The evolution of data manipulation and data management systems, such as SAS®,
SPSS® and SQL®, and relational database management systems, such as IBM® DB2 UDB®
and the Oracle® RDBMS, has resulted in several high-level software languages that are
inconsistent and, in some cases, unstructured. Based on these inconsistencies and the
unstructured nature of some of these languages, database management languages may be
difficult to use, edit and debug. Moreover, because of the lack of a standardized syntax among
these programming languages, it has been difficult for users of these languages to share code.
This is particularly the case with SAS®.

Since the advent of personal computers and the GUI Interfaces such as Windows®
Interfaces, it has become increasingly necessary for businesses to develop or purchase

customized software in order to support specific business strategies or processes. This, in turn,

(789640.1)

20

has led to the implementation of a variety of software development tools and Integrated
Development Environments ("IDEs"). Generally, these software development tools assist users
and programmers in editing, debugging and developing software for specific programming
languages. Software providers of data manipulation languages or systems have, however, failed
to provide a single comprehensive software development tool capable of assisting users in the
editing, visualizing, debugging and development of software. Furthermore, the creation of
graphical development tools for particular programming languages, such as, SAS®, has been
inhibited by the intricacies of the programming language itself.

Over the years, point solutions have been introduced to address specific issues. For
example, there are a few GUI based fip software packages to make the job of transferring and
managing code easier. There are also a few GUI based editor software packages to make editing
code easier. Still further, there are software packages that one can use to manually diagram
program flow and data flow. What is lacking, however, is a software package that integrates
these best of breed point solutions and integrates them in such a way that they work seamlessly
with each other, e.g., to have an editor that is integrated with a ftp package so that the editor can
edit files that are located in a remote server or to have the editor integrated with the diagramming
package so the user does not have to manually generate and update program flow or data flow
diagrams.

Thus, a need exists for an Integrated Development Environment for generating and
maintaining software code, in particular, for data manipulation centric languages. More
specifically, a need exists for a system and method for exchanging, editing, debugging,
visualizing and developing SAS®, SPSS®, SQL®, DB2 UDB®, Oracle® RDBMS and other

relational database management system software.

(789640.1)

20

SUMMARY OF THE INVENTION

In accordance with these needs, the present invention is embodied in an Integrated
Development Environment for generating and maintaining source code (software programmed in
a software language), in particular, programmed in data manipulation languages. Generally, the
system in which the Integrated Development Environment resides includes a local computer
capable of exchanging files with a remote computer via a network system, 1.¢., a Local Area
Network, a Wide Area Network, or the Internet. The local computer preferably hosts the
Integrated Developers Environment which is further comprised of a document manager for
transferring files and otherwise providing enhanced file management functions, such as, version
synchronization across multiple platforms. The document manager works in connection with a
server module, a site manager and a connectivity layer which is part of the Integrated
Development Environment to connect to remote computers, to transparently exchange files with
the remote computer and to manage server profiles and connection information that is related to
remote computers and transferred files.

Once a file is transferred to the local computer, an editor, which is included as part of and
integrated with the Integrated Development Environment, can modify the code associated with
the file. In addition, the editor is also capable of creating new files and provides many advanced
editing features such as visual execution break points, standardized formatting of files, and line
numbering to name a few. A visualizer, i.e., a software tools that reads the code and generates
diagrams and graphical representation of the program flow, data flow or the logic of the code, is
also integrated and included as part of the Integrated Development Environment. Program flow

diagrams are comprised of program block icons and arrows to depict the code’s program flow.

(789640.1)

20

Data flow diagrams are comprised of icons depicting data processing steps and arrows to depict
the flow of the data through the program. Preferably, the visualizer and editor are integrated so
that changes made to the code in the editor are immediately reflected in the visualizer and vice-
versa. The visualizer can also read information from execution logs and execution outputs to
display the execution path for selected code and automatically display insightful debugging and
optimization information for the selected code to the user.

To assist in developing new code or editing existing code, the Integrated Development
Environment further includes a template manager that allows the user to browse through a
repository of existing code or templates and to copy templates into the selected code for editing.

For allowing the editor to process code that is written in different Data Manipulation
System programming languages and for creating the program flow icons, the Integrated
Development Environment additionally includes a parser layer. The parser layer detects the
type of code in the selected file and activates the rules and logic that apply to the corresponding
Data Manipulation System programming language.

As will become apparent from the detailed description that follows, the subject Integrated
Development Environment provides, among others, the following unique functions: seamlessly
exchanging with and executing files on local and remote computers, where the site manager is
capable of compiling connection information for remote computers necessary to achieve the
seamless transfer and execution of files; automatically generating program flow and data flow
diagrams, where the program flow and data flow diagrams can be viewed at various levels of
abstraction and where the user is capable of utilizing a step-wise function to collapse or expand
the levels of abstraction to view; and automatically parsing the execution log to automatically

match errors and warnings in the log file to the appropriate corresponding lines of code in the

(789640.1)

15

20

program file in order to ease the ability to correct the error, to visually highlight problematic
areas, and to generate user customizable error messages and debugging advice for such
problematic areas.

A better understanding of these and other objects, advantages, features, properties and
relationships of the invention will be obtained from the following detailed description and
accompanying drawings which set forth an illustrative embodiment and which are indicative of

the various ways in which the principles of the invention may be employed.

BRIEF DESCRIPTION OF DRAWINGS

For a better understanding of the invention, reference may be had to a preferred
embodiment shown in the following drawings in which:

Figure 1 is a diagram illustrating an exemplary computer network for generating,
maintaining and executing computer code;

Figure 2 is a diagram illustrating exemplary components of the local computer;

Figure 3 is an exemplary screen shot depicting a graphical user interface displaying a
Menu bar, a Tool bar, a Display area (in this case the Editor) and a Navigation bar;

Figure 4 a— f are exemplary screen shots and corresponding tables depicting icons that
are representative of menu items included on the Menu bar, along with the name of each menu
item and a functional description of pertinent menu items;

Figure 5 is a diagram illustrating the tool bar and a corresponding table describing the
pertinent functions associated with the buttons included on the Tool bar;

Figure 6 is an exemplary screen shot depicting an Editor window in Full Screen mode,

along with corresponding output and log file tabs;

(789640.1)

20

Figure 7 is an exemplary screen shot depicting a tree view, along with the corresponding
code segments;

Figure 8 is an exemplary screen shot depicting a template manager window with
available templates;

Figure 9 is an exemplary screen shot depicting a program flow for a selected file, along
with arrows that indicate the flow of data within the program flow;

Figure 10 is an exemplary screen shot depicting a server module window configured for
automated login and including session tabs for Server A and Server B;

Figure 11 is an exemplary screen shot depicting a site manager window;

Figure 12 is an exemplary screen shot depicting a document manager window;

Figure 13 is an exemplary screen shot depicting a search panel for locating files;

Figure 14a is an exemplary screen shot depicting an Enhanced Editor Options window;

Figure 14b is an exemplary screen shot depicting a Color tab window for customizing the
font colors associated with the code displayed by the Editor;

Figure 14c is an exemplary screen shot depicting a General tab window for configuring
the usage of an external editor in-lieu of the built-in editor, enabling and disabling line
numbering for the code displayed by the Editor, and selecting print options;

Figure 14d is an exemplary screen shot depicting an Execution Configuration tab for
configuring the execution mode and execution location for selected files;

Figure 15 is an exemplary screen shot depicting the template window as it is displaying
available web-based templates to the user;

Figure 16 is an exemplary screen shot of a web-based template that is already configured;

Figure 17 is an exemplary screen shot depicting a data flow for a selected file;

(789640.1)

Figure 18a-c are a series of exemplary screen shots depicting operation of a step-wise
function and various data flows as the data flows are being collapsed;
Figure 19 is an exemplary screen shot depicting the visualizer employing the Split Screen
view;
5 Figure 20 is an exemplary screen shot depicting the visualizer with a problematic code
section and a corresponding program flow icon being displayed in red;
Figure 20a is an exemplary screen shot depicting the visualizer with a problematic code
section and a corresponding error log for that code section;
Figure 20b is an exemplary screen shot depicting a debugging hint associated with a

problematic code section;

Figure 20c is an exemplary screen shot depicting an error message and a corresponding
debugging hint being provided by the message manager;
Figure 21 depicts a predefined class structure for recognizing and displaying tokens,

which is employed by a file parser to parse a selected file; and

Figure 22 depicts an exemplary file that has been parsed and the corresponding class

structure of the parsed file.

DETAILED DESCRIPTION
Turning now to the Figures, wherein like reference numerals refer to like elements, there
20 isillustrated an Integrated Development Environment having numerous cooperating modules
which together provide a system and method for generating and maintaining software, n
particular, the software for data development and data manipulation languages. Although not

required, the system and method will be described in the general context of a computer network

(789640.1)

20

20, illustrated in Fig. 1, and computer executable instructions being executed by general purpose
computing devices within the computer network 20. In this regard, the general purpose
computing devices may comprise one or more remote computers 22a, and one or more local
computers 22b, hosting an integrated software application 30. The computer network 20 can
also include one or more databases 24. It should be appreciated that the network components
could be described as having client and server relationships, as generally known in the art.

To allow the local computers 22b to generate and maintain code written in various
programming languages, the integrated software application 30 will reside on the local computer
22b. Further, as shown in Fig. 2, it is preferable that the integrated software application 30
execute on a Java Virtual Machine ("JVM") which acts as an interface between the integrated
software application and the operating system for the local computer 22b. Although the
operating system for the local computer 22b is preferably Windows® based, it should be
understood that the local computer 22b could employ any one of the currently existing operating
systems, such as LINUX®, UNIX®, MAC OS®, etc.

For editing, generating and maintaining software (i.e., program code), the local
computers 22b include a graphical user interface 40. As shown in Fig. 3, the graphical user
interface 40 is further comprised of a menu bar 42, a tool bar 44, a display area 46 and a
navigation bar 48. Fig. 4a-4e shows exemplary drop-down menu items included on the menu
bar, along with a brief description of the functionality associated with those options. Figure 4f
shows the "Right-Click” menu. The tool bar 44 is further comprised of and displays several
buttons, including a template manager button 44a, which serves as a link to a template manager
100. In addition, Fig. 5 shows exemplary buttons included on the tool bar 44, along with a brief

description of the functionality associated with those buttons. The navigation bar 48 is further

(789640.1)

20

comprised of and displays a document manager button 48a, a site manager button 48b, an editor
button 48c, a visualizer button 48d, a database manager button 48f, and a server button 48e,
which serve as links to modules corresponding with these respective buttons, i.e., a document
manager 60, a site manager 70, an editor 80, a visualizer 120, a database manager 121, and a
server module 160, each of which will be described in greater detail below.

As will be appreciated by those of skill in the art, the computers 22a, 22b need not be
limited to personal computers, but may include hand-held devices, multiprocessor systems,
microprocessor-based or programmable consumer electronics, minicomputers, mainframe
computers, personal digital assistants, cellular telephones or the like depending upon their
intended end use within the system. For performing the procedures described hereinafter, the
computer executable instructions may be written as routines, programs, objects, components,
and/or data structures that perform particular tasks. Within the computer network 20, the
computer executable instructions may reside on a single computer 22a, 22b or the tasks
performed by the computer executable instructions may be distributed among a plurality of the
computers 22a, 22b. Therefore, while described in the context of a computer network, it should
also be understood that the present invention may be embodied in a stand-alone, general purpose
computing device that need not be connected to a network.

To perform the particular tasks in accordance with the computer executable instructions,
the computers 22a, 22b may include, as needed, a video adapter, a processing unit, a system
memory, and a system bus that couples the system memory to the processing unit. The video
adapter allows the computers 22a, 22b to support a display, such as a cathode ray tube (“CRT”),
a liquid crystal display (“LCD”), a flat screen monitor, a touch screen monitor or similar means

for displaying textual and graphical data to a user. The display allows a user to view

(789640.1)

20

information, such as, code, file directories, error logs, execution logs and graphical user interface
tools.

The computers 22a, 22b may further include read only memory (ROM), a hard disk drive
for reading from and writing to a hard disk, a magnetic disk drive for reading from and writing to
a magnetic disk, and/or an optical disk drive for reading from and writing to a removable optical
disk. The hard disk drive, magnetic disk drive, and optical disk drive may be connected to the
system bus by a hard disk drive interface, a magnetic disk drive interface, and an optical disk
drive interface, respectively. The drives and their associated computer-readable media provide a
means of non-volatile storage for the computer executable instructions and any other data
structures, program modules, databases, etc. utilized during the operation of the computers 22a,
22b.

To connect the computers 22a, 22b within the computer network 20, the computers 22a,
22b may include a network interface or adapter. When used in a wide area network, such as the
Internet, the computers 22a, 22b typically include a modem or similar device. The modem,
which may be internal or external, is connected to the system bus via a serial port interface. It
will be appreciated that the described network connections are exemplary and that other means
of establishing a communications link between the computers 22a, 22b may be used. For
example, the system may also include a wireless access interface that receives and transmits
information via a wireless communications medium, such as a cellular communications network,
a satellite communications network, or another similar type of wireless network. It should also
be appreciated that the network interface will be capable of employing TCP/IP, FTP, SFTP,

Telnet SSH, HTTP, SHTTP, RSH, REXEC, etc. and other network connectivity protocols.

10
(789640.1)

15

20

For seamlessly transferring files, the document manager 60 is utilized. The document
manager 60 is a file management program that performs many enhanced file management
functions, such as recognizing related files, (e.g. , execution log files, output files, include files,
etc.) and managing related files as a unit, regardless of the location of such files. For example, if
the user causes the document manager 60 to transfer a file from the remote computer 22a to the
local computer 22b, the document manager 60 may also determine whether any related files
exist, i.e., files that are or will be used in conjunction with the file that the user is transferring,

and transfer those files as well. As will be described in further detail below, these enhanced file

. management functions, including managing related files and storing information, such as

origination and timestamp information about these files, allow the user to exchange files with
and execute code on local computers 22b and/or remote computers 22a. To accomplish the
enhanced file management functions, the document manager 60 may also include an intelligent
module 62, a security layer 66 and a file transfer program 68.

The intelligent module 62 enables the document manager 60 to track pertinent file
transfer information 64 that enable the performance of enhanced file management functions,
including, uploading files from a source computer and returning/downloading an edited version
of the same file to the same source computer for storage, execution, etc. To accomplish the
functions of returning edited files to the source computer and executing edited files remotely, the
file transfer information 64 may include a source computer identifier, a file directory identifier, a
content identifier, a timestamp or other information capable of allowing the tracking of the type
or path of files that are transferred between computers 22a, 22b or within a single computer 22b.

To ensure that the integrity and security of the network 20 is maintained, a security layer

66 is utilized. The security layer 66, which is part of the site manager 70, may save server login

11
(789640.1)

20

information supplied by the site manager 70 thereby allowing subsequent file exchanges to be
handled transparently. The security layer 66 may also be capable of configuring the integrated
software application 30 to work with firewalls. The site manager 70 gathers server login
information and similar information for use by the document manager 60, the intelligent module
62 and the security layer 66, and interacts closely with each of these modules. Preferably,
remote file access and file execution are handled centrally through the site manager 70.

To maintain existing software and develop new software, the editor 80 allows the user to
perform standard text editing functions, including, mouse placement of the cursor, click-and-drag
text selection and standard Windows® key combinations for cutting, copying and pasting data.
While editing code that has been previously executed, the associated log files and output files
that are stored in the same directory 104 as the code will automatically be opened and each of
these files will include a corresponding tab 84a, 84b, as shown in Fig. 6. The user can access
each of these files by clicking on the corresponding tab 84a or 84b and switch between several
related files by clicking on different tabs. The editor 80, the document manager 60 and the site
manager 70 cooperate to track the association between edited code, the log files and output files
that are generated by the edited code, and the remote system on which edited code may be
executed. The editor 80 may also employ language-specific syntax checking and auto-correct
functions to enhance the software development capability of the integrated software application
30.

To make the code more manageable and allow the user to see a more abstract version of
the code, the editor 80 also provides a means to invoke a tree view 90, which may be displayed
near the editor 80. The tree view 90 depicts individual procedures and data blocks as active

elements 82 and shows the code at a high level. Since each active element 82 is representative of

12
(789640.1)

20

a larger code segment, as shown in Fig. 7, the user can navigate throughout the code by selecting
active elements 82 and thereby displaying the larger code segment associated with the selected
active element 82 (i.e., the editor will automatically scroll to the region where the code segment
is visible). To make it easier to cut, copy or move code segment, the user can right-click on an
active elements in the tree. This will cause the editor to automatically scroll to the region where
the code segment is located and highlight the entire code segment. The user can then cut or copy
the highlighted code segment to the clipboard.

For enabling users to add pre-existing lines of code or templates 106 to a program being
edited or created, the editor 80 also includes the template manager 110, which may be accessible
to the user by clicking on the Template button on the tool bar 44 menu. As shown in Figure 8,
the template manager window 102 includes a directory 104 of templates 106, which are both
pre-built and written by the user and which may be examined by navigating the directory 104 in
a manner that is well-known in the art. The template manager 110 allows the user to insert
templates 106 directly into the code that is being created/edited. In addition, the template
manager 110 also allows the user to create and organize their own templates 106. Still further,
the template manager 110 could be used in connection with the Internet and a web browser to
view and retrieve templates stored at remote locations, such as web sites, bulletin boards, etc.
The Template Manager 100 can store the templates (both built-in and those developed by the
user) locally and/or centrally on a remote server making it easy for the entire workgroup or
enterprise to share these templates.

In addition, the editor 80 may also provide an auto-complete function capable of
automatically generating code ‘based on templates 106 managed by the template manager 100.

For example, as soon as a user keys in a recognized key word, the editor 80 will automatically

13
(789640.1)

perform a look-up function for that keyword in the directory 104. If a template 106 includes a

matching keyword, then the editor 80 may automatically paste the template into the display area.

If more than one template 106 matches the keyword, then a pop-up window will be displayed

presenting the user with the option of selecting one of the matching templates. It should also be
5 appreciated that the user customize the integrated software application 30 by enabling or

disabling the auto-complete feature.

For viewing the program flow and data flow of a selected program, as will be further
described below, the visualizer 120, in connection with a parser layer 140, reads, parses and
displays the code for the selected program, representing each program and data block with a

program flow icon 126. As illustrated in Fig. 9, arrows connect these program flow icons 126 to

generally illustrate the flow of data.
Assuming that the designated code segment has been executed previously and that the

execution log is readily available, the user may also “mouse-over” the program flow icon to

display the comments and execution statistics, i.e., CPU usage, number of row processed, etc.,

15 associated with the block. Right-clicking on the program flow icon will activate specific
functions or options associated with the icon. For example, the dataset icon (i.e., an icon that
represents a dataset or a table) will display a list of data inspection or data discovery functions,
including ad hoc SQL® queries. Ad hoc SQL® queries that are selected may be executed by the
respective engine. These engines (e.g., SAS, DB2 UDB, or other RDBMS servers) can resides

20 locally on the user’s workstation or remotely on the LAN/WAN and the results, once retrieved
will be displayed in a pop-up output window.

To access and interact with remote computers 22a via command lines, the server module

160 acts as a robust terminal emulator. The server module 160 allows users to open one or more

14
(789640 1)

20

sessions thereby simultaneously gaining access to one or more hosts/remote computers 22a. In
addition, the user has the option of executing edited code on a remote computer 22a, by
employing the server module 160, in connection with the site manager 70, to connect the local
computer 22b to the remote computer 22a, as will be described in more detail below. Once a
session is opened, a terminal tab for the respective session can be created and displayed to the
user by the server module 160, as illustrated in Fig. 10. It should be understood by those with
skill in the art that the server module 160, the site manager 70 and the document manager 60 all
preferably interact with one another to effectuate the transfer of code between the remote server
computers 22a and the local computer 22b. It should also be understood that each of these
modules could be combined or further divided to form one single module or additional modules.
The site manager 70 assists the local computer 22b with access to the remote computers
22a. For example, the document manager 60 and the server module 160 use the site manager 70
to collect the connection information 78 necessary for the local computer 22b to make a
LAN/WAN connection to a remote computer 22a using either FTP, SFTP, Telnet SSH, HTTP,
SHTTP, RSH, REXEC and other TCP/IP connectivity protocols. Additionally, to avoid
manually entering the connection information 78 each time a different remote computer 22ais
accessed, the site manager 70 is also capable of saving connection information 78 for different
servers. Thus, the site manager 70 creates a virtual computing environment by expanding the
computing boundary of the local computer 22b to include remote computers 22a and making
various computing resources across the LAN/WAN seamlessly available for use by the local
computer 22b. As shown in Fig. 11, the site manager window 72 may be divided into a first
panel 74 and a second panel 76. The first panel 74 displays a tree structure that depicts the

system configuration 74a for each of the remote computers 22a that are available to the local

15
(789640.1)

20

computer 22b. The second panel 76 displays the connection information 78 for a selected remote
computer 22a, including but not limited to the following fields: Profile Name 78a, Host Address
78b, User 78c, Password 78d, FTP port 78¢ and Telnet Port 781 .

The site manager 70 also includes a PASV mode and Firewall option which can be
selected by the user. PASV mode is supported as an option to allow file transfer programs
("FTPs") to work with a firewall. This feature reverses the connection between the remote
computer 22a and the local computer 22b allowing many users whose sessions are hosted behind
firewalls to use the document manager 60. Therefore, PASV mode is useful for certain types of
firewalls that do not allow FTP servers to initiate data connections back to the connected client.
If the Firewall option is selected, the firewall configuration parameters from the Firewall tab of
the Option Dialog will be used to initiate a connection to this profile. Moreover, if the local
computer 22b resides behind a firewall that limits or restricts FTP access and the Firewall mode
is selected, the necessary connection information 78 and Firewall selections for the local
computer 22b must be entered, i.e., a host name, port number, user ID and password. In
accordance with procedures that are generally known in the art, the Firewall Type box permits
the user to select the command required by the firewall to initiate an FTP session from the site
manager 70. In addition to providing options that enhance the network connectivity of the local
computer 22b, the Option button also provides tools and wizards for automatically searching the
LAN/WAN for designated resources. These tools and wizards simplify the network/server
connection setup between the local computer 22b and the remote computers 22a.

For parsing the code, the parser layer 140 is provided. The file parser 142 retrieves code
utilizing the services provided by the document manager 60 and examines the words/tokens

which comprise the code 144. The file parser 142 also identifies and tags the tokens 144 to

16
(789640.1)

20

indicate that they are one of a variety of token classes, such as, a keyword token, a newline
token, a quotestring token, a macro token and a comment token. Since the integrated software
application 30 is language aware, the parser layer 140 may accommodate varying language
types. Thus, although the preferred embodiment of the present invention is specifically designed
to include modules for parsing SAS® and SQL code, it should be appreciated that the modules
can be included for parsing and interpreting other language types, such as, SPSS®, DB2 UDB®
Store Procedures, ORACLE® PL/SQL, etc.

For managing and interacting with database files, a database manager 220 may be
provided which automatically interacts with the local ODBC registry to display a list of ODBC
resources. In addition, the database manager 220 may automatically search the LAN/WAN for
RDBMS servers and display the list of RDBMS servers that are found locally or remotely. The
database manager also allows the user to select and drill down to a desired database and
automatically connect to the selected database, unless a login screen is required to connect to the
database. Once connected to the selected database, the Database Manager will display a list of
tables which are stored and available in the database. The user can then right-click on a
particular table to gather statistics or to retrieve sample data from those tables. The user can also
drill down on a particular table to display the columns of the tables. Similarly, the user can click
on a particular table to gather statistics (e.g., frequency counts, min max, distinct value, average,
etc.) or to retrieve sample data from those tables. The user can also drag and drop tables onto a
work area to graphically generate SQL® statements to retrieve data from the database.
Additional data manipulation functions, e.g., pivot, crosstab, and templates will be available to
help users inspect, transform, import, export, map, format, transport and derive new data based

on existing data. The database manager 220 may also include a meta data manager 222 to help

17
(789640 1)

20

the user document the business or logical definition of the data, and the technical or physical
definition of the data. The meta data manager 222 may also assist the user in tracking the
lineage of the data, i.e., the source of the data, the changes to the data that were made and the
destination of the data.

To further exemplify the functionality of the integrated software application 30, the
following section will discuss an exemplary software development session, along with the
modules used to effectuate the respective functions.

This hypothetical session commences with activation of the integrate software application
30. Once the integrated software application 30 is launched, the graphical user interface 40 will
be displayed and the user will have the opportunity to open modules in the navigation bar 48 or
engage functions represented by buttons in the menu bar 42 or the tool bar 44. For determining
to which computer the user desires access, the user would begin by activating the site manager
70, which causes the site manager window 72 to be displayed to the user. The site manager
window 72 includes a first panel 74 and a second panel 76. As shown in Fig. 11, the first panel
74 of the site manager window 72 displays the defined/available remote computers 22a for the
user's selection. As discussed above, the second panel 76 of the site manager window 72
displays a server profile for a selected remote computer 22a, comprising connection information
78, including, but not limited to, the following fields: Profile Name 78a, Host Address 78b,
User, Password, FTP port 78e and Telnet Port 78f. As will be appreciated, the site manager can
be configured to search the network for servers or certain types of servers and display the found
servers for selection by the user.

The server profiles 170 may be populated by selecting a folder icon 172 to use as a parent

directory 174. Once a parent directory 174 is opened, the user may click on the New button 176

18
(789640.1)

20

to create a new server profile 170. Therefore, it should also be understood that the site manager
70 allows the user to create new server profiles 170 by entering the necessary connection
information 78. To edit an existing server profile 170, the user must select a remote computer
22a and click the Edit button 178. After the Edit button 178 is selected, the cursor may be
moved to the Profile Name 78a for editing or modification, or the user may click on the Option
button for Advance Network/Server Connectivity Configuration Settings.

The text displayed in the Profile Name 78a field can be a profile name 78a that was
selected in the first panel 74 of the site manager window 72 or text the user enters in creating a
profile for a remote computer 22a or host. The Host Address 78b field may contain an IP
address or a resolvable DNS host name of the FTP, SFTP, Telnet, SSH, REXEC, HTTP, or
SHTTP server for the respective host definition. The User 78c field may contain the login name
that the user will enter to access the remote server computer FTP account. If the selected remote
computer 22a accepts anonymous FTP requests, "anonymous” may be entered in this field. The
Password 78d field may contain a password 78d for the remote server computer FTP account,
unless an anonymous login is used; then, the Password 78d field may remain blank. The FTP
port 78¢ field is set by default to 21, since most server computers 22a accept FTP connection
requests on port 21, however, the FTP Port 78¢ field may be changed as needed. The Telnet
Port 78f field is set by default to 23, since most server computers 22a accept Telnet connection
requests on port 23, however, the Telnet Port 78f field may also be changed as needed.

Once the user selects a remote computer 22a to access, the connection information 78 for
the selected remote computer 22a is returned by the site manager 70 and displayed to the user.
Then, the user is given the option of connecting to the selected remote computer 22a by selecting

the Connect Telnet button. When the Connect Telnet button is selected, the server module 160 is

19
(789640 1)

20

activated. To connect to the remote computer 22a, the server module 160 utilizes the
connectivity layer 180. More specifically, as is known in the art, the connectivity layer 180
utilizes the connection information 78 with TCP/IP and other similar networking protocols to
interconnect with the remote computer 22a. Once the server module 160 has made an initial
connection with the selected remote computer 22a, a server module window 162 is displayed to
the user. The server module window 162 displays the name of the remote computer 22a to
which the user is trying to connect.

‘Prior to opening a session on a particular host, the user may be required to login or the
server module 160 may automatically log the user on (depending on the settings that the user has
selected in the server profile 170, i.e., save login and password). Fig. 10 shows a server module
window 162 that is configured for automated login, with a home path preset to the integrated
software application's SAS® directory. The combination of the site manager 70, the server
module 160 and the connectivity layer 170, enable the user to seamlessly access SAS®
documents, log files and output files stored at the remote computer 22b.

Once the local computer 22b accesses a remote computer 22a using the combination of
the site manager 70, the server module 160 and the connectivity layer 170, the document
manager 60 will be activated automatically. Moreover, to view the available files for a selected
computer, the document manager window 170 may be displayed to the user. As shown in Fig.
12, the document manager window 170 includes a local panel 172 and a remote panel 174. Each
of these panels, 172, 174 displays the available files for the respective computers 22b, 22a as a
file tree structure, as shown in Fig. 12. The user may then select one or more of the available
files for editing or visualizing. In the preferred embodiment of the present invention, files that

are located in the local panel 172 are resident on the local computer 22b and files that are located

20
(789640.1)

20

in the remote panel 174 are resident on the remote computer 22a, but it should be appreciated
that such designations are for explanatory purposes only and that other variations of network
systems and computer designations could be employed.

The document manager 60 also allows the local computer 22b to perform various
Windows® commands, such as, creating new files, renaming, deleting and opening existing
files, printing files, copying, cutting and pasting information to the Windows® clipboard, and
other standard commands that are generally known in the art. In addition, the document manager
60 provides a Search Option 69. As shown in Fig. 13, selecting the Search Option 69 opens the
search option window 692 and allows users to search any file system that is accessible to the
local workstation/local computer 22b, in accordance with generally known file searching
techniques, including by exact or partial file name, modification date or date range, and content.

To open a file displayed in the local panel 172, the user may double-click on the selected
file, or highlight the selected file and start the desired module (i.e., the editor 80 or the visualizer
120). If the user double-clicks on a file located in the local panel 172, the editor 80 will
automatically open and display the file. To open and edit a file displayed in the remote panel
174, it is preferable that the user drag a selected file from the remote panel 174 of the document
manager 60 and drop the selected file in the local panel 172 of the document manager 60. It
should also be understood by those with skill in the art that other methods for opening and
moving files may be employed.

To retrieve a file that is stored on a remote computer 22a, the document manager 60 may
utilize a file transfer program 64, in connection with the site manager 70 and the connectivity
layer 180. For example, as is known in the art, the document manager 60 may send a request to

the file transfer program 64 to import the selected file from a particular remote computer 22a. In

21
(789640.1)

20

response to this request, the file transfer program 64 may communicate with the remote
computer 22a via the connectivity layer 180 and instruct the remote computer 22a to send the
selected file to the local computer 22b. When the selected file is being transferred from the
remote computer 22a to the local computer 22b, the intelligent module 62 of the document
manager 60 may compile file transfer information 64, as noted above. It should also be
understood that, while it is preferred to have the intelligent module 62 compile file transfer
information 64, other similar modules may be equally capable of accomplishing the task of
compiling file transfer information 64 for the system 20.

Again, for exemplary purposes only, it is assumed that the user has chosen to edit the
code before visualizing it. As mentioned above, to begin editing files, the user may either
double-click on the selected file, which automatically opens the editor 80, or the user may
highlight the selected file and then open the editor 80. To open the editor 80, the user need only
double-click on the Editor button 48c located in the navigation bar 48 of the graphical user
interface 40, as shown in Fig. 3.

As shown in Fig. 6, once the editor 80 begins the editing process (the default setting is
Full Screen mode), the contents of a selected file are returned from the document manager 60
and displayed to the user beside a navigation bar 48 bar. For editing the code and implementing
advanced code-handling capabilities, the editor 80 also includes features, such as, language-
aware syntax highlighting, warning and error log file highlighting, automatic line numbering,
automatic completion of code segment based on program templates, tree views of program
blocks and code templates 106 . By highlighting key code statements, the language-aware

syntax highlighting makes the code easier to read and edit. In addition, by highlighting the code,

22
(789640.1)

20

based on information contained within the warning and error log files, errors in the code are
more apparent and the code is easier to trouble-shoot.

To allow the user to customize, edit and maintain error messages and the corresponding
debugging hints, the message manager 88 is provided. More specifically, the message manager
88 allows the user to create, update and delete error messages. For example, the user can click
on any error message in the log and in response to this selection, the message manager 88 may
compare the selected error message to an existing repository of error messages The repository of
error messages can be stored locally and/or centrally in a remote server accessible and sharable
by the entire workgroup or the entire enterprise. If the selected error message matches one of the
existing error messages, a debugging window will pop-up. The debugging window will display
the original error message, along with any corresponding debugging hints that are associated
with the original error message as provided by the message manager 88. If the selected error
message does not match one of the existing error messages, the message manager 88 may
automatically read the new message into the repository of error messages. Additionally, the user
may have the option to associate debugging hints with the new error message.

To further add to the utility of the editor 80, the user can open the Enhanced Editor
Options window 84 by clicking the Editor Configuration button 86 in the Options pull-down
menu. The Enhanced Editor Options window 84 is further comprised of a General tab 84a, a
Font tab 84b, a Color tab 84c and an Execution tab 84d. As is generally understood in the art
and as shown in Fig. 14a, the font type, size and style of the code may also be customized by the
user by selecting the Font tab 84b in the Enhanced Editor Option window 84. Additionally, as
shown in Fig. 14b, the Color tab 84c of the Enhanced Editor Options window 84 may be selected

to allow the user to select the colors that are used in connection with various syntactically

23
(789640.1)

15

20

significant language elements in the SAS® program file, thereby allowing the user to customize
the language-aware syntax highlighting and warning and error log file highlighting functions. To
further configure the user workspace, the editor 80 allows the user to choose whether or not to
display line numbers in connection with editing the code. For example, as shown in Fig. 14c, the
General tab 84a can be selected by the user and may provide options for selecting a line
numbering button representative of disabling or enabling the line numbering, specifying printing
options or indicating the use of alternate editor. For allowing the integrated software application
30 to configure the execution path for selected files, the Execution tab 84d can be selected by the
user and the execution mode and execution location may be defined (i.e., Locally or Remotely),
as illustrated in Fig. 14d. By configuring the execution path for selected files, the user can
execute the code on local or remote computers 22b, 22a or engines.

Once the selected code is displayed on the editor window 82, the user can begin to edit
the code. Although the default setting for the editor window 82 is the Full Screen mode, the user
can also select a Split Screen mode. The Split Screen mode splits the editor window 82 into two
panels, i.e., the tree view panel 82a and the code view panel 82b. To enhance the ability of the
user to navigate within the body of the code, the tree view panel 82a displays the tree view 90,
which is comprised of a group of active elements 92. The tree view panel 82a displays a high-
level representation of the code and the code view panel 82b displays the corresponding code
that is associated with a highlighted active element 92. To this end, the editor 80 works in
connection with the parser layer 140 to parse the code in a manner that allows the editor 80 to
display a tree view 90 comprised of active elements 92 that are representative of code section
that perform important functions, such as, the introduction of new variables or the execution of

append, print or similar functions. Thus, the user can navigate through the code by clicking on

24
(789640.1)

20

the desired active element 92, which causes the code that corresponds with that active element to
be displayed in the code view panel 82b.

The user can also add pre-existing code to the program being edited, by opening the
template manager 100. The template manager 100 allows the user to select existing templates
106 and to integrate the code associated with those templates 106 into the code by simply
clicking on the paste button or by utilizing standard cut and paste tools, or similar functions, as
will be explained in greater detail below.

Once the template button 44a is selected, the template manager 100 is activated and the
template manager window 101 is opened. It should be appreciated that the template manager
100 may be a separate browser; therefore, the template manager window 101 may remain open
throughout the users session. The template manager window 101 may be further comprised of a
template directory panel 101a and a template code panel 101b. The template directory panel
101a may display a directory 104 of template folders 105 or available templates 106. To display
the code associated with an available template 106, the user may select a file folder containing
available templates 106 from the directory 104 and select an available template 106, which is
located within the selected file folder. Once a template 106 is selected, the template code 106a
associated with the template 106 is returned to the template manager 100 and displayed in the
template code panel 101b.

To insert the template code 106a associated with a selected template 106 directly into the
code that is being edited, the user may click the Copy button 102 on the template manager
window 101; this places the template code 106a associated with the selected template 106 into

the Windows® clipboard. Then, the user should place the cursor in the desired location within

25
(789640.1)

20

the code and select the Paste button 103. Or the user may simply click the paste button and the
template will be copied directly into the current location of the cursor in the document.

The template manager 100 may also allow the user to create new template folders 105 for
storing templates 106, to create new templates 106 and to edit existing templates 106. These
templates can reside on either the local drive or the network drive. In addition, for allowing the
template manager 100 to import additional templates 106 from remote computers 22a, the
template manager 100 also enables the user to browse web-based templates 108 . As shown in
Fig. 15, once the web-based templates 108 are accessed and displayed on the template manager
window 101, the web-based templates 108 may be utilized in a manner similar to the templates
106. As shown in Fig. 16, additional web-based templates 108 may be added to the template
manager 100 by the user. It should also be understood that the templates 106 are web enabled,
i.e., the user can associate links or URLs with the template during creation. Thus, users may be
capable of clicking on a link and causing the template manager 100 to automatically activate a
web browser to display any content associated with the link.

Once the user has completed the editing or development of the code, the user can execute
and debug the code. In addition, the code can be executed locally or remotely. As is known in
the art, the user may also use the editor 80 to set break points 112 in the code. As shown in Fig.
23, break points 112 can be set by selecting the line numbers that correspond to the intended
location of the break points 112. It should also be appreciated that by setting break points 112 in
the code, the code can be executed in its entirety or as a block of code with the additional option
of skipping specified code segments within the selected blocks.

The site manager 70, the document manager 60 and the editor 80 work in conjunction

with one another to execute the code. For example, the site manager 70 manages the connections

26
(789640.1)

20

between the local computer 22b and the remote host/remote computer 22a; the document
manager 60 tracks the associations between the code, the log files and the output files that are
generated and the remote system on which the code is to be executed; and the editor 80 allows
the user to modify the code. Moreover, for assisting users in developing and maintaining
software, the editor 80 and the visualizer 120 have an integrated relationship. For example, each
of the active elements 92 displayed in the tree view 90 may also be represented in the visualizer
120 and any changes made in the editor 80 can be simultaneously reflected in the visualizer 120.

To execute code remotely when the code resides on a remote computer 22a, the code is
first copied to a directory on the local computer 22b. Next, the user should open the local copy
of the code. After the local copy is opened and returned to the editor 80, the code view panel
82b will display the code. The user can also use the document property wizard to specify the
server and the location in which they intend to execute the code. The server or location may be
selected by browsing the server list in the site manager 70.

To execute code remotely when the code resides on a local workstation/local computer
22b, the user first instructs the site manager 70 to make a connection to the remote computer 22a.
Then, the user may cause the document manager 60 to copy the code from the local computer
22b to a directory 104 on the remote computer 22a. To select code for execution, the user can
drag an icon representing the selected code from the local panel 172 of the document manager 60
window and drop the icon in the remote panel 174 of the document manager 60 window. It
should also be appreciated that the selected code could be copied by other means that are
generally known in the art. Next, the user should open the local copy of the code. After the

local copy is opened, the editor window 82 will display the code.

27
(789640.1)

20

To execute the code or code segments, the user selects the Execute Program button 44a
on the tool bar 44 or in the Right-Click menu. Once the Execute Program button 44a is selected,
the server module 160 connects to the proper computer 22a, 22b using the connectivity layer 180
and causes the execution script, which may be defined in the site manager 70, to operate on the
selected code. After execution of the code is complete, a system prompt will be displayed. The
user may then type "exit" to return to the editor 80 window; the document manager 60
automatically transfers the session's .log an Ist files to the same directory 104 from which the
code was copied and displays them as separate tabs on the Editor 80 window. The user can also
configure the remote execution function to that it will exit automatically.

As shown in Figs. 9 and 17, the visualizer 120 may be used to show the program flow
122 or the data flow 124 of the selected code on the visualizer window 121. Additionally, the
user will be able to toggle between the program flow display 122a and the data flow display 124a
by selecting the View Program Flow button 122b or View Data Flow button 124b, respectively.
As shown in Fig. 9, the program flow 122 is displayed as a default and displays program flow
icons 126, which are graphical representations of code sections, in the order that they occur in
the code.

For generating the program flow icons 126, a document view engine 200 is provided.
The document view engine 200 operates in conjunction with the parser layer 140 to parse the
code. Using information provided by the parser layer 140, the document view engine can
intelligently recognize and arrange individual procedures and data blocks on the visualizer
window 121 and represent the procedures and data blocks as program flow icons 126. The
document view engine 200 may also allow users to assign meaning and attributes to tokens 144,

which are identified by the parser layer 140. By assigning meanings and attributes to tokens 144,

28
(789640.1)

the document view engine 200 allows the visualizer to create program flows 122 and data flows
124.
As shown in Fig. 17, the visualizer 120 may also show the data flow 124 of the subject

code. The data flow 124 is generated by parsing the code, tracing the flow of the data through
5 the code and displaying individual processes and data blocks in separate columns with arrows
that connect the program flow icons 126 and indicate the direction of the data flow. In addition,
as shown in Fig. 18, the data flow visualizer also allows the user to combine flows in a step-wise
manner, thereby following the flow of the data from start to finish. As the user clicks the Step-
wise button 121a located on the visualizer window 121, shown in Fig. 17, the visualizer 120 and
the document view engine 200 may re-generate the data flow 124a on the visualizer window 121
and collapse the number of program flow icons 126 that comprise the data flow 124, ultimately
showing the entire lineage of the data (i.e., where the data came from, how the data has been

processed and where the data was stored). Thus, the visualizer 120 enables the user to view a

representation of the flow of data during execution of selected code one step or program

15 statement at a time. It should also be appreciated that the user may take a single data flow 124
and reverse the step-wise function, thereby expanding the number of program flow icons 126
that comprise the data flow 124 and showing the data flow 124 for individual sections or blocks
of code.

It should also be appreciated that the integrated software application 30 allows changes to

20 the code to be made textually or visually, i.e., by using the editor 80 or the visualizer 120,
respectively. Editing, creating or developing new code visually using the visualizer is achieved
by reverse engineering the exiting code or code templates, i.e., SAS®, SQL®, SPSS®, DB2

UDB®, Oracle® RDBMS and UNIX® Scripts, and displaying the code visually using icons. As

29
(789640.1)

20

the user manipulate these icons visually, code will be generated. Any changes to the code via the
visual interface can be forward engineered to assume a textual format capable of being executed
on the respective Data Development and Data Management System. Therefore, the integrated
software application 30 is capable of producing a textual file that is derived from a visual model
and executing the derived textual file.

As shown in Fig. 19, the visualizer window 121 may also be configured to display a split
view. When the visualizer window 121 is in split view mode, the visualizer window 121 will be
comprised of a flow panel 121b and an visualizer code panel 121c. The flow panel 121b will
display either the program flow 122 or the data flow 124, and the visualizer code panel 121c will
display the code for program flow icons 126, which are shown in the flow panel 121b.
Moreover, by clicking on an icon in the program flow window or data flow window, the user can
cause the editor 80 window 100 to display the portion of the code that corresponds to the
program flow icon 126 that was selected. This is especially helpful in debugging the code.

For example, as shown in Fig. 20, when elements appear in red, this signifies that the
highlighted element contains an error in the underlying code. If the user selects the highlighted
element, a pop-up window may be displayed to the user depicting the code associated with the
highlighted element, along with the corresponding Error log, i.e., the editor 80 will scroll to the
corresponding section of code and display the code to the user, while also displaying the Error
log in close proximity to the code. It should be appreciated by those with skill in the art that
during the user session, the user may freely navigate between the document manager 60, the
editor 80 and the visualizer 120, as needed, by selecting the corresponding icon in the navigation

bar 48.

30
(789640.1)

20

It should also be understood that the user can visualize the execution log. Visualizing the
execution log will show the exact path of the program flow 122 and data flow 124. The program
flow 122 and the data flow 124 will be exact because they are based on the actual execution of
the code. This in turns provides additional debugging and optimization information, such as, the
code section that will get executed, how much data is being processed, the execution time for the
code, the external files, library or macros that are referenced by the code, the format for the fully
instantiated macro, etc.

For parsing the code, the document manager 60 first determines the file type for a
selected file, i.e. the SAS®, SPSS®, SQL®, DB2 UDB®, Oracle® RDBMS etc. After the file
type for a selected portion of code is determined, the parser layer 140 deploys the corresponding
file parser 142, e.g., a file parser 142 that corresponds to, in this case, one of a variety of data
manipulation and/or data management programming languages. By deploying the appropriate
file parser 142, the parser layer 140 also activates the respective rules and logic that correspond
to the detected programming language. Therefore, users are capable of developing, editing and
maintaining code that can be executed by more than one data manipulation and/or data
management program.

As mentioned earlier, the parser layer 140 is capable of processing varying file types, as
the integrated software application 30 has been designed to be language aware. For example, as
mentioned above, the document manager 60 recognizes file types and the integrated software
application 30 includes enhanced, standalone productivity tools, such as, generic text editors, the
Windows File Manager and File Transfer programs 68. In addition, these productivity tools are
also designed to work seamlessly with the integrated software application 30 by implementing

XML protocols, as is generally known in the art. Thus, although the preferred embodiment of

31
(789640.1)

20

the present invention is designed to interact with SAS® code, it should also be appreciated that
the system will also be capable of parsing and interpreting other file types, such as, SPSS®,
SQL®, DB2 UDB®, Oracle® RDBMS, etc.

As is generally known in the art, after the file parser 142 retrieves code from the
document manager 60, the file parser 142 breaks the code document 146 into individual
words/tokens 144. Based on the class of the individual tokens 144, the file parser 142 identifies
and tags the tokens 144. Tokens 144 can be tagged to indicate that they are one of a variety of
classes, such as, a keyword token 144a, a newline token 144b, a quotestring token 144c, a macro
token 144d and a comment token 144e. By tagging the tokens 144, the parser layer 140 enables
the document view engine 200 to recoénize and display the program flow 122. As shown in Fig.
21, the document view engine 200 employs a predefined class structure for recognizing and
displaying the tokens 144 provided by the file parser 142. An example of the class structure as it
might be implemented in a parsed document/file is shown in Fig. 22.

While specific embodiments of the present invention have been described in detail, it will
be appreciated by those skilled in the art that various modifications and alternatives to those
details could be developed in light of the overall teachings of the disclosure. For example, the
processes described with respect to computer executable instructions can be performed in
hardware or software without departing from the spirit of the invention. Furthermore, the order
of all steps disclosed in the figures and discussed above has been provided for exemplary
purposes only. Therefore, it should be understéod by those skilled in the art that these steps may
be rearranged and altered without departing from the spirit of the present invention. In addition,
it is to be understood that all patents discussed in this document are to be incorporated herein by

reference in their entirety. Moreover, while the present invention may be described in terms of a

32
(789640.1)

particular programming language, it should also be understood that the present invention may be
programmed in various other software languages. Accordingly, the particular arrangement
disclosed is meant to be illustrative only and not limiting as to the scope of the invention which

is to be given the full breadth of the appended claims and any equivalents thereof.

33
(789640 1)

	2001-11-19 Specification

